Nuevo método para la consolidación de pinturas murales basado en dispersiones de cal viva en alcohol

Rodolico Giorgi, Luigi Dei
Piero Baglioni

Departamento de Química
Universidad de Florencia

Introducción

La consolidación y la pre-consolidación son medidas críticas en los tratamientos de conservación de pinturas murales [1]. La consolidación se lleva a cabo normalmente para reducir, en la medida de lo posible, la descamación y/o la pulverización tanto de las capas de pintura así como del intonaco (enlucido) de un mural. Por lo general, se pueden llevar a cabo hasta cinco tipos diferentes de consolidación en pinturas murales:

1. re-adhesión de la capa de pintura al soporte, para frenar la descamación

2. re-cohesión interna de la capa de pintura pulverulenta, como consecuencia de una pérdida de aglutinante

3. aislamiento de las superficies pintadas para minimizar los efectos de dispersión que opaca los colores

4. consolidación del intonaco en el interfaz intonaco/intonaco

5. pre-consolidación de la capa de pintura

La última de las técnicas mencionadas es necesaria...
en la limpieza de zonas altamente sulfatadas, o para preparar los muros para su extracción. Durante tales intervenciones se utilizan numerosas sustancias químicas, orgánicas e inorgánicas. En cualquier tratamiento de conservación se deben respetar dos reglas generales: durabilidad y compatibilidad físico-química con los materiales originales [2]. Además, la consolidación no debe alterar en exceso las propiedades de los materiales originales, tales como la porosidad y el área superficial total, puesto que afectaría al flujo de gases y líquidos por toda la superficie del muro.

Los compuestos usados en el proceso de consolidación reciben a menudo el nombre de fijadores [1]. Dicho término indica la mezcla del elemento consolidante con un agente dispersante necesario para su aplicación. Con el objeto de conseguir una buena consolidación, el fijador debe ser capaz de penetrar a una profundidad de al menos dos o tres milímetros, para así evitar la formación de películas superficiales o la acumulación de material en las capas externas. Un adecuado método de consolidación debería tener en cuenta los siguientes puntos:

- debido al tamaño de sus partículas, las dispersiones penetran con mayor dificultad que las soluciones homogéneas

- debido a las atracciones electrostáticas con las matrices polares de los muros, los fijadores no polares penetran más profundamente que los fijadores polares

- los fijadores que contienen menos agentes dispersantes volátiles son más eficaces que aquellos que usan disolventes volátiles puesto que permanecen en la superficie durante más tiempo

- los agentes dispersantes con tensión superficial y viscosidad bajas actúan mejor

- los fijadores deben ser incoloros, transparentes, no tóxicos y resistentes a los agentes atmosféricos y la degradación medioambiental.

A veces, es necesario aplicar fijadores en las superficies húmedas de los muros. En estas circunstancias, se pueden usar disolventes orgánicos de baja polaridad y baja tensión superficial para evitar así una mayor penetración del fijador en la capa de pintura [3, 4]. Tanto los fijadores orgánicos como los inorgánicos han sido usados en la consolidación de obras de arte incluyendo, en los últimos 30 años, numerosas resinas poliméricas artificiales (acrílicas y vinílicas). No obstante, la irreversibilidad del tratamiento, la exiguia durabilidad, el cambio drástico de las propiedades estructurales de los muros y la escasa compatibilidad con el substrato, a menudo están asociados a tratamientos realizados con materiales orgánicos [5, 6].

Los consolidantes basados en elementos inorgánicos poseen la gran ventaja de una buena durabilidad y, desde un punto de vista físico-técnico, por lo general, son compatibles con la matriz del muro. Los consolidantes inorgánicos más comunes y simples, son las soluciones de agua de cal o Hidróxido de Bario en agua. Las soluciones de Hidróxido de Bario han sido utilizadas durante muchos años con resultados positivos [7, 9]. Sin embargo, no se puede considerar al Hidróxido de Bario como un elemento completamente compatible con la matriz de un muro, porque pequeñas cantidades de Bario (como por ejemplo Carbonato de Bario o Sulfato) se introducen en la matriz del Carbonato de Calcio.

El mejor consolidante podría ser el Hidróxido de Calcio, Ca(OH)$_2$, que formaba el aglutinante original. Desafortunadamente, la escasa solubilidad del Hidróxido de Calcio en el agua (1.7 g/l a 20°C [10]) ha frenado un uso extendido del agua de cal como consolidante de pinturas murales [11]. La única forma de aumentar la concentración de Ca(OH)$_2$ en el agua de cal es la utilización de una dispersión de cal viva, en agua, a veces en presencia de arena pulverizada. Las dispersiones de cal viva no se usan como norma general, tan sólo en el micro-estuco o en inyecciones internas [12, 13]. Asimismo, las dispersiones de cal viva en agua no son estables ya que tienen una velocidad de sedimentación muy rápida. Este hecho descarta su uso como consolidante porque forma una película blanca en las superficies a consolidar. Éstas limitaciones en el uso de consolidantes inorgánicos han favorecido la inadecuada utilización de los ya mencionados compuestos poliméricos que con frecuencia han producido daños en las pinturas murales.

Este estudio investigó la estabilidad y las propiedades consolidantes de ciertas dispersiones de Hidróxido de Calcio recientemente formuladas por nuestro laboratorio, Andrea di Firenze y S. utilizó la consolidación de los muros en la Cappellone degli Spagnoli (Capilla de los Españoles) en el Chiostrro Verde (Claustro Verde) de la iglesia de Santa María Novella en Florencia con excelentes resultados. Estas nuevas dispersiones de Hidróxido de Calcio pueden ser consideradas como una primera elección para la consolidación de pinturas murales, representando una innovación en los tratamientos de consolidación para la conservación de pinturas murales.

Apartado experimental

Los materiales utilizados en los trabajos experimentales fueron los siguientes: cal apagada (Hidróxido de Calcio, Ca (OH)$_2$, 45% y 55% de agua w/w); Hidróxido de Calcio (polvo) >99.5% de pureza; propan-1-ol, >99.5% de pureza; cuarzo, SiO$_2$, malla de 40-100, >99% de pureza. El agua usada tenía grado CLAP (cromatografía líquida a alta presión) (resistencia >18Ω cm) obtenida a partir de un Milli-Q más un Sistema Milli-Q-Agua (Organex). Todos estos materiales fueron usados sin purificación profunda. Las características de las partículas de Ca(OH)$_2$ en el polvo y la cal apagada vienen descritas en la Tabla 1.
La estabilidad de las dispersiones se determinó como sigue: las dispersiones se prepararon agitando energéticamente 0.25 gr de Ca(OH)₂ (pelo o cal apagada) en 40 ml de agente dispersante (agua o propan-1-ol) a temperatura ambiente. La absorbancia, A, fue medida en 600 nm, usando un espectrofotómetro ultravioleta/visible Lambda 5 Perkin-Elmer, inmediatamente después de la preparación de la dispersión (tiempo, t = 0) y cómo función del tiempo hasta 16 horas. La estabilidad cinética relativa de las dispersiones fue establecida como el parámetro, calculado usando la ecuación (1) [14].

$$\Xi = \left(1 - \frac{A_t}{A_0} \right) \times 100 \quad (1)$$

Las muestras del mortero (tamaño 50 x 50 x 10 mm) en el que se probaron las dispersiones de Hidróxido de Calcio se prepararon como se explica a continuación. Cal apagada y cuarzo puro (tamaño de las partículas 40-100 malla) en varias proporciones (1:2, 1:3, 1:5, 1:8 y 1:10 v/v cal apagada/cuarzo) se mezclaron en una cantidad suficiente de agua destilada para obtener una pasta. Las proporciones 1:2 y 1:3 representan un mortero ordinario de intonaco para pintar un fresco, mientras que las proporciones 1:5, 1:8 y 1:10 fueron elegidas para producir morteros sin aglutinante (cal apagada) para simular la descohesión. Estas pastas, se colocaron en moldes de madera sobre ladrillos cubiertos con papel de filtro para evitar la adhesión de la muestra a los ladrillos. Con el objeto de conseguir un alto grado de carbonación del Hidróxido de Calcio, se dejó que el mortero se asentase adecuadamente al aire durante dos meses. Para probar la eficacia de los consolidantes, las dispersiones de Hidróxido de Calcio fueron frotaadas sobre dichas muestras, protegiendo la superficie con papel de seda japones. La dispersión de cal viva/propan-1-ol usada como pre-consolidante en la restauración de pequeñas zonas de los murales de la Capilla de los Españoles, fue tratada en un baño ultrasónico de Branson B-12 durante seis minutos para reducir más el tamaño de las partículas.

Resultados y discusión

Se prepararon dos grupos de dispersiones, cada uno con 0.625 gr de Ca(OH)₂ en 100 ml de disolvente, es decir, dispersiones de polvo de Ca(OH)₂ agua, cal apagada en agua, polvo de Ca(OH)₂ en propan-1-ol y cal apagada en propan-1-ol. La estabilidad de estas dispersiones fue controlada, siguiendo la absorbancia como una función del tiempo. En la figura 1 se muestra la estabilidad de la cal apagada en propan-1-ol, del polvo de Ca(OH)₂ en propan-1-ol, y de la cal apagada en agua pura. El polvo de Ca(OH)₂ en agua (no aparece en la figura 1), se comporta de igual forma que la cal apagada en el agua. La figura 1 muestra cómo las dispersiones en agua son inestables, mientras que las dispersiones en alcohol poseen una estabilidad bastante buena. En particular, las dispersiones de cal apagada son más estables que aquéllas de polvo de Ca(OH)₂, de acuerdo con el diámetro de menor promedio de las partículas (véase Tabla 1). La información cuantitativa sobre la estabilidad de las dispersiones se obtuvo a partir del parámetro Ξ, calculado como una función del tiempo.

El parámetro de estabilidad para las dispersiones en agua es sobre el 10% 30 minutos después de la preparación de la dispersión, indicando que la mayoría

Tabla 1. Características del polvo de Ca(OH)₂ y las partículas de la cal apagada

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Polvo</th>
<th>Cal apagada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área superficial BET (m²/g)</td>
<td>1-14</td>
<td>25-39</td>
</tr>
<tr>
<td>Diámetro medio de las partículas (µm)</td>
<td>5-8</td>
<td>3-4</td>
</tr>
</tbody>
</table>

La eficacia del consolidante se determinó comprobando las propiedades tanto químicas (grado de carbonación) como físicas-estructurales (ascensión capilar, permeabilidad al agua, porosidad total, resistencia esclerométrica y cohesión de la superficie) de cinco muestras de cada tipo de mortero. Las curvas de ascensión capilar y la permeabilidad al vapor de agua fueron determinadas usando los procedimientos mencionados en la bibliografía [15, 16]. El grado de carbonación de las muestras de polvo fue comprobado por difractometría de rayos X usando un difractómetro Philips PW 3710 equipado con un tubo Cu-Kα. La información quedó registrada como 2 valores entre 5 y 65 grados. El grano de carbonación fue determinado también por calcimetría usando el método Dietrich-Fröling. La medición de la porosidad (porosidad total) se llevó a cabo usando un micrómetro Ruakar 1060-800, mientras que la resistencia a la abrasión de la superficie (ensayo de esclerometro) se midió usando un microduremetro (para la dureza del metal) haciendo rayas de 30 mm de longitud con un peso de 300 g sobre el punzón. El parámetro de la cohesión de la superficie φ (en m²) fue definido como el recíproco de la anchura de la raya media. La cohesión de la superficie también se midió con el "ensayo de la cinta adhesiva" [1, 2].
de la suspensión ya se había asentado. Después de 1.6 horas, los parámetros de la estabilidad eran 63 y 86% para el polvo y la cal apagada respectivamente. Fue de interés el hecho de que la alta estabilidad de las dispersiones en alcohol no puede ser atribuida solamente a las fuerzas hidrodinámicas que oponen gravedad. Si la velocidad de sedimentación se calcula con la ecuación (2) [17]:

\[\dot{V}_s = 2a^2 \left(\rho - \rho_a \right) g \eta \] \hspace{1cm} (2)

donde a es el radio de la partícula, la densidad de Ca(OH)₂, \(\rho \) la densidad del medio dispersante, \(g \) la aceleración debida a la gravedad y \(\eta \) la viscosidad de la fase dispersante, se obtienen unos valores en torno a los 1-10 cm/hora tanto para el agua como para el alcohol. Estos valores son lo suficientemente altos como para que se pueda predecir que la sedimentación completa desde una suspensión de propan-1-ol ocurra en el cabo de varias horas, tal como ocurre con los sistemas en agua. Por lo tanto, la estabilidad mejorada detectada en el propan-1-ol como medio dispersante, se debe a la combinación de interacciones electrostáticas e hidrofóbicas que impiden tanto la sedimentación como la aglomeración de partículas.

Una vez que se había establecido la estabilidad de las dispersiones, se estudió su uso como consolidantes en la conservación de pinturas murales. Se aplicaron a la superficie de los morteros de muestra preparados según se describe en el apartado experimental. Debido a la baja proporción de cal, las muestras simulan la descohesión de los murales; en concreto, cuando la proporción cal/muestra es de 1:8 o 1:10, la superficie es pulverulenta al tacto. Antes del tratamiento de consolidación, las muestras de los morteros se caracterizaron por la absorción de la ascensión capilar, la permeabilidad del agua, la porosidad del mercurio, la resistencia esclerosómetra y la cohesión de la superficie. Se protectaron las superficies de los morteros con papel de seda japones y se trataron de tres a cuatro veces con las dispersiones. Tres o cuatro minutos después de la última aplicación, se realizó la determinación de la absorción de la dispersión en las muestras de los morteros y se retiró el papel japones. Se advirtió que las dispersiones eran muy líquidas, su viscosidad era casi idéntica a la del propan-1-ol. Dependiendo de las condiciones termodinámicas, el tiempo necesario para que el propan-1-ol se evaporase completamente era de hasta 12 horas. Esto dejó partículas de Ca(OH)₂, encerradas en el material matriz consolidado, y se permitió a las muestras fraguarse durante un mes. Después de este período de tiempo, se evaluó la efectividad del tratamiento de consolidación.

La Figura 2 muestra el comportamiento de la ascensión capilar de las muestras de los morteros (proporción entre arena y cal 8:1 por volumen) antes y después del tratamiento con la dispersión de cal/propan-1-ol. Es evidente que la absorción de agua en la superficie tratada es menos pronunciada que la superficie sin tratar del "objetivo" (muestras de referencia), lo que implica que el tratamiento ha hecho que la superficie sea más compacta y menos permeable al agua. Asimismo, el tratamiento ha cambiado la forma de la curva de absorción de agua desde un tipo exponecial a otro exponencial, indicando un tiempo de inducción parcial para la absorción de agua por la superficie.

La Figura 3 muestra la permeabilidad al vapor de agua como una función de tiempo [16]. La consolidación por la dispersión cal/propan-1-ol produce una disminución de la permeabilidad al vapor de agua, lo que confirmó la eficacia del método [18]. Un buen consolidante debería producir un material más compacto, que será menos permeable al vapor de agua. Por otro lado, la disminución de permeabilidad al vapor de agua puede ser atribuida a la consolidación en masa (muestra completa), o a la consolidación de solo los primeros micrones en la superficie. Con el objeto de discriminar entre estos dos mecanismos diferentes, se llevaron a cabo mediciones de porosidad total.
La Figura 4 muestra la porosidad total de las diferentes muestras de los morteros tratadas con disper- siones de cal/propan-1-ol. Es evidente que sólo se con- solidaron las capas superficiales, ya que, de lo contrario, se habría detectado una apreciable dismi- nución de la porosidad total (asociada con la acúmulo- sión de los poros por las partículas de Ca(OH)₂). Este método no produjo ninguna reducción drástica de la porosidad, lo que indica que se trata de un proce- dimiento de consolidación apropiado, en el sentido de que no altera dramáticamente los materiales originales.

La Tabla 2 resume las propiedades físico-químicas de las muestras de los morteros antes y después del tratamiento con la dispersión de cal/propan-1-ol. Estos datos muestran claramente la mejora del coeficiente de absorción capilar, el parámetro de la cohe- sión de la superficie (por durímetro) y los resultados del SST, indicando un aumento constante de la cohe- sión después de la aplicación de la dispersión de cal/propan-1-ol a aquellas muestras de los morteros que mostraban previamente una escasa cohesión.

Conforme se iban obteniendo resultados positivos en los laboratorios, la técnica fue aplicada a los mu- rales realizados por Andrea da Firenze en la Capilla de los Españoles en el Claustro Verde de Santa María Novella, en Florencia.

La Figura 5 muestra un fragmento del mural con un adorno geométrico, antes y después del tratamiento. El deterioro se debase principalmente a la desca- maración y pulverización de la capa de pintura, lo que precisó una pre-consolidación. Normalmente se podría haber conseguido usando una mezcla de cal viva y casaña, pero esta mezcla introduce un ma- terial incompatible (la casaña) en la estructura de los murales. Nuestro objetivo era el sustituir esta mez-
La dispersión fue aplicada usando una brocha, mientras que se protegieron fragmentos de 30x30cm en la superficie de la pared con papel de seda japonés. El papel japonés permitió que la dispersión se aplicara sin dañar la superficie de pintura retraído mecánicamente polvo de pigmentación y/o fragmentos. La distribución del tamaño de los poros del papel japonés fue seleccionada de forma que todas las partículas de Ca(OH)₂ en la dispersión de cálculo alcohol penetrara en la pared sin dejar residuos en la superficie del papel. Primero, la pared fue tratada con 100ml de una dispersión que contenía 0.5g de Ca(OH)₂ por 100ml de propan-1-ol y se dejó fraguarse durante una semana. Esta dispersión estaba ligera y no concentrada que, aquéllas probadas en el laboratorio (0.625g por 100ml), como precaución ante el riesgo de dejar una película blanca sobre la superficie del muro. Una segunda aplicación de 70ml de la misma dispersión se llevó a cabo usando el mismo procedimiento, y se dejó fraguar durante otros 10 días. Después de esta pre-consolidación, el muro fue conservado usando los métodos presentados por Ferroni y Dini [7-9, 19-21]. La aparición final tras la restauración aparece ilustrada en la figura 5. Los resultados son básicamente los mismos que aquéllas obtenidos usando la "técnica de la caseta", pero con la importante diferencia de que no se introdujo ningún material inorgánico en la estructura del muro que pudiera haber producido efectos canínicos, debido a la posible proliferación de microorganismos, o a las diferentes propiedades físico-químicas del material orgánico.

Conclusiones

Este estudio ha demostrado que es posible obtener dispersiones de cálculo alcohol estábles que pueden ser usadas en la conservación de pinturas murales. Las dispersiones contienen alrededor de tres veces más de Ca(OH)₂ que las soluciones de cálculo acuosas saturadas y su estabilidad es de alrededor unas horas. Esta estabilidad es particularmente importante para su posible aplicación a superficies de pinturas murales. La alta estabilidad cinética de las dispersiones es fundamental a la hora de evitar sedimentaciones de cálculo viva sobre las superficies pintadas y los consiguientes acrastulamientos blanquecinos irremediables.

Una dispersión de cálculo/ propanol fue probada en el laboratorio como condensante de las muestras de los morteros que simulaban una importante descomposición debido a una escasa concentración de aglutinante. Todos los parámetros medidos confirmaron que la dispersión proporcionaba una correcta consolidación sin acrystalamiento alguno en las superficies. En concreto, la resistencia a trazas tangenciales (mediciones esferonóméticas con el diamante y el ensay de abrasión de la superficie (SSS) indicó la alta cohesión de las capas de pintura superiores.

La dispersión también fue usada en la restauración de pinturas murales de Andrea del Sarto en la Capilla de los Españoles, con excelentes resultados. Se debe recordar que este método no debería usarse, o debería usarse con extrema cautela, en presencia de pigmentos sensibles a soluciones acuicas o expuestas en seco. Los autores aconsejan que la técnica sea usada sin perjuicio en aquellos casos en los que el uso de agua de sal sea apropiado. Finalmente, la cualidad clave de este nuevo método es su completa compatibilidad físico-química con los materiales de la obra de arte original.

Agradecimientos

Los autores desean expresar su gratitud a los Dr. Mario Lalli Ghetti y la Dra. Lita Maria Medri, Dirección de los Bienes Culturales y Arquitectónicos de la Provincia de Florencia, Prato y Pistoia, las cuales autorizaron y permitieron nuestros ensayos con dispersiones de cálculo viva en la Capilla de los Españoles en el Claustro Verde de Santa María novella, en Florencia. Asimismo, agradecemos a la Dra. Moira Ambrosi la preparación de las dispersiones aplicadas a los murales de la Capilla de los Españoles al Dr. F. Fratini y al Dr. C. Mangenelli del Ìsta su ayuda en las mediciones de la porosidad y al señor Paolo Parri su diligente preparación de los dibujos. Muchas gracias a la señora Paola Errera por su trabajo de restauración. Se reconoce con gratitud al apoyo financiero otorgado por el Consejo de Investigación Nacional Italiano (CNR) "Proyecto Finalizado Bienes Culturales 1995-2000", del Ministerio de Investigación Universitaria y Científico-Tecnológica (MURST) y del Consorcio Intersannedarí de Sistemas en Grandes Interfaces (CSG), Italia.

Proveedores de los materiales

- Hidróxido de Calcio (polvo) y propan-1-ol: Merck, Darmstadt, Alemania.
- Cuatro, mayo de 90-100: Huka, Buch, Suiza.
- Cal apagada (Hidróxido de Calcio más agua) como "crema de cal": Ceprovio, Medolato (BG), Italia.
- Papel de seda japonés: Zecchi, Florencia, Italia.
- Sistemas MilliRO6 y Milli-Q-Agua (Organex): Millipore SA, Francia.
Referencias bibliográficas

7. BOTTICELLI, G., DANTI, C. y GIOVANONI, S., "Twenty years of barium application in mural painting" EN ICOM Committee for Conservation 7th Triennial Meeting, Copenhagen (1984) 84.15.6-84.15.11.

8. MATTEINI, M. y MOLES, A., "Twenty years of application of dibutaradilm" on mural paintings: fundamentals and discussion of the methodology" EN ICOM Committee for Conservation, 7th Triennial Meeting, Copenhagen (1984) 84.15.15-84.15.19.

